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Use of Effective Interactions in the Analysis of Deformed Nuclei*! 
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Energy levels in O17, F18, F19, and Ne20 are calculated. The wave functions for the various states are gener
ated from intrinsic deformed potential wave functions. The wave functions for which best agreement is 
obtained are similar to those obtained by Redlich. No a priori assumptions are made on the form of the 
two-body forces. These are adjusted to give best fit with experiment. The agreement obtained between the 
calculated and experimental energy levels is good. 

1. INTRODUCTION 

1.1 Intermediate Coupling Shell Model 

IN a recent paper1 it has been shown that the spectra 
of the oxygen isotopes O17—O20 are very well 

described by pure jj-cowpling shell model. These nuclei 
are characterized by having only neutrons outside closed 
shells. The addition of protons changes the situation radi
cally. Results of Elliott and Flowers2 and of Redlich3 

indicate that the spectra of F18, F19 (or Ne19) and Ne20 

cannot be ascribed to pure y^-coupling configurations. 
On the contrary, one can show that the effective forces 
between protons and neutrons in the unfilled shells may 
introduce quite large configuration mixing. This is true 
even if the total number of nucleons outside the closed 
shells is small. Indeed, simple considerations show that, 
for any short-range attraction between nucleons, the 
//-coupling shell model is a much better approximation 
for states with maximum isospin T, than for states with 
lower T (see Appendix A). 

One must therefore assume appreciable configuration 
mixing in order to understand the structure of F18, 
F19, or Ne20. 

Intermediate coupling calculations were carried out 
by Elliott and Flowers2 and by Redlich3 for the nuclei 
O17, O18, F17, F18, and F19 (or Ne19). They take a phenom-
enological two-body interaction and harmonic oscil
lator wave functions to calculate the elements of the 
energy matrices. These matrices are then diagonalized. 
These authors use a very special kind of nuclear force 
which has no a priori justification. It is, therefore, not 
surprising that their calculated energies are only in 
rough agreement with the experimental data. One of 
their results, however, is quite insensitive to the details 
of the nuclear force. They find that the mixing between 
the different yj-coupling configurations is much bigger 
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for states with low-isospin T than for states with 
maximum T. For low-isospin states, such as the T=Q 
states of F18, it is not enough to mix various ld5/2

n2si/2m 

(n+m==A —16) configurations, although these are the 
lower configurations.4 One has to admix also configura
tions for which at least one nucleon is in the 1̂ 3/2 sub-
shell. A possible reason for this is given in Appendix A. 

To demonstrate this fact, it is sufficient to compare 
the spectra of F18 and Al26 (Fig. 1). If it is assumed that 
yj-coupling is valid in F18 and Al26, then their spectra 
are simply related. The spectrum of the d5/2

2 configura
tion in F18 (one proton and one neutron) should be 
identical with the spectrum of the db/2~

2 configuration in 
Al26 (one proton hole and one neutron hole). Let us 
see to what extent this is actually so. The 5+ levels are 
probably pure J5/22 and d5/2~

2 levels, respectively. The 
high spin of these levels restricts drastically the possibil
ity of configuration mixing. These levels are therefore 
matched in Fig. 1. We see immediately that the T= 1 0+ 

and 2+ levels are almost in the same position in both 
nuclei. On the other hand, the T=0 1+ and 3+ levels 
are strongly shifted downwards in F18. The fact that 
the second T=0 1+ level of F18 lies lower than the 

FIG. 1. Low-lying 
energy levels of F18 

versus Al26. 
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4 An unsuccessful attempt of this kind was made by the author, 
even though no assumption was made on the form of the two-body 
interaction (see Ref. 21). 
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lowest r = 0 1+ level in Al26 indicates that at least 
three //-coupling states are strongly admixed in F18. 
In other words, at least one of the T=0 1+ states of 
F18 has a big admixture of the 5̂/2̂ 3/2 configuration. 

In this work we shall show how it is possible to carry 
out intermediate coupling calculations in this region 
without restricting the two-body interactions to a 
special form. In order to do it we shall use the method of 
effective interactions to be described in the next section. 

1.2 The Method of Effective Interactions 

The method of effective interactions was introduced 
by Talmi for theoretical interpretation of nuclear 
energies.5 According to this method the only assump
tions which are made are of very general nature. It is 
assumed that the forces are charge independent and 
that they are two-body forces only. It is also assumed 
that the radial parts of the single-nucleon wave func
tions are the same for all the nucleons in a certain 
subshell, independent of the number of nucleons in this 
subshell. 

The matrix elements of the nuclear interaction in 
the two-body configurations, as well as the single-
nucleon energies are taken as free parameters ("effective 
interactions") to be adjusted so as to fit best the experi
mental data. The experimental energies of various 
states in various nuclei can be expressed as linear 
combinations of a small number of these parameters. 
The form of these expressions depends on the model 
which is used. The number of experimental data which 
are expressed in that way by a certain set of parameters 
is usually bigger than the number of parameters in this 
set. Therefore, if a set of values for these parameters 
can be found which reproduces to a good accuracy the 
experimental data, the model is justified. 

The method of effective interactions was first applied 
to pure //-coupling shell-model analysis.6 Later it was 
shown7 that the same procedure may sometimes be 
used even in regions where interaction between jj-
coupling configurations is not negligible. 

However, the number of such parameters rises 
rapidly as complexity of the models increases. On the 
other hand, the number of experimental data is limited. 
For example, using this method to analyze the spectrum 
of Ne20, assuming the full intermediate coupling scheme, 
of d$/2, S1/2, and 3̂/2 orbits, would require 66 parameters. 
The number of experimental data which may be 
conveniently applied in this analysis is about 20. It is, 
therefore, impossible to use this procedure for inter
mediate coupling shell-model analysis of Ne20. 

It is our purpose in this paper to show that the 
method can still be used if one starts with different 
wave functions. One could take wave functions which 
are projected from Nilsson-like intrinsic deformed 

5 A list of references is given in a review article, Ref. 6. 
6 1 . Talmi and I. Unna, Ann. Rev. Nucl. Sci. 10, 353 (1960). 
7 1 . Talmi and I. Unna, Nucl. Phys. 19, 225 (1960). 

potential wave functions. As we shall see, it happens 
that wave functions thus obtained are good approxima
tions to the intermediate coupling wave functions. 
This is true at least in the region in which we are 
interested here. Of course, the effective interaction 
parameters will now have a different form. We shall 
avoid in that way the necessity to make ad hoc assump
tions on the form of the nuclear forces. We believe that 
this is the reason why the agreement between experi
mental energies and those calculated by us is much 
better than the agreement which was obtained by 
former investigators using either intermediate coupling2 

or deformed potential3 wave functions. 

1.3 The Wave Functions 

Kurath and Pieman8 calculated wave functions for 
various states in the first p shell by projection from 
intrinsic deformed potential wave functions. These 
intrinsic wave functions were obtained by just multiply
ing (and antisymmetrizing) Nilsson's,9 single-nucleon 
orbitals. Kurath and Pieman found that the wave 
functions thus obtained are almost equal to those 
obtained by intermediate coupling calculation, provided 
that one chooses proper values for the deformation 
parameters tj in the first calculation and the spin-orbit 
strength parameter 7 in the second calculation. 

Redlich3 used the same generating procedure to 
calculate wave functions in the (Id, 2s) region. He did 
not use the original Nilsson orbitals but adjusted them 
to get better agreement between his wave functions 
and those calculated in intermediate coupling calcula
tions. The wave functions which he obtained are almost 
identical with those calculated by Flowers and Elliott2 

in the intermediate coupling scheme. 
We may conclude that the generating procedure 

gives wave functions well approximating the inter
mediate coupling wave functions. 

Redlich used his wave functions and a phenomeno-
logical two-body interaction to calculate the energies of 
the various states. The agreement with the experimental 
energies was not very good. Similarly, the agreement of 
the energies obtained in the intermediate coupling 
calculation with the experimental energies was not 
satisfactory. The question arises whether the models 
assumed are not adequate or that only the choice of the 
two-body forces is to be blamed. This question is 
answered by our work. We show that an adjustment of 
two-body forces is enough to remove the discrepancy 
between theory and experiment. No charge of the model 
has to be made. 

We make the whole calculation with the generated 
wave functions. As we have already pointed out it is 
only in this scheme that we can avoid restrictive 
assumptions on the form of the two-body forces or the 

8 D . Kurath and L. Pieman, Nucl. Phys. 10, 313 (1959). 
9 S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys. 

Medd. 29, No. 16 (1956). 
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radial parts of the single-nucleon wave functions. This 
freedom is achieved at almost no cost because of the 
above-mentioned near identity between these wave 
functions and the intermediate coupling wave functions. 

2. OUTLINE OF CALCULATION 

2,1 The Wave Functions 

The wave function of a single nucleon in the (Id, 2s) 
shell (say, the last neutron in O17) is taken to be 

configurations12: 

<Pk=Xkfa (df)+ytfj/k (d$)+ztfpk (s\), (1) 

where k is the component of j along the symmetry axis 
of the nucleus. The functions \pk are the shell-model 
single-nucleon wave functions. The coefficients Xk, yk, 
and %k depend on the form of the deformed potential 
well. 

The wave function of several nucleons in the (Id, 
2s) shell is obtained by multiplication and antisym-
metrization of the wave functions (1) of the individual 
particles. The wave function of a configuration of m 
neutrons and (n—m) protons is10 

<PkiO)<Pki(2)- - - <pkm(m)}2 
cm-{-l ' ' Kn' 

X{j^{cpkm+1(m+l)<pkm+2(m+ 2 V - • <Pk » } ] , (2) 

(where <A is the normalized antisymmetrization 
operator). The quantum number i£"=X^=in hi is the 
value of JZJ the component of the total angular momen
tum / along the symmetry axis of the nucleus. 

The functions (1) and (2) are still not. eigenfunctions 
of the total angular momentum / . One has, therefore, to 
project out the part with a certain definite total angular 
momentum / . This projection is equivalent to rotating 
the whole function, i.e., taking a proper combination 
over all directions. The proper state of m neutrons and 
(n—m) protons will, therefore, be 

1 • • • & « / R"m-\-1' " ' R>n' 

I h • Km \ 
JM) (3) 

The operator PMJ projects out the part with the total 
angular momentum / and steps K up or down to M. 

Following the results of several papers3-11 we assume 
that F18, F19, and Ne20 have positive deformations (i.e., 
a cigar shape). The lowest states in these nuclei are 
therefore obtained by first filling nucleons into the 
& = ± § single-nucleon level. The single-nucleon states 
k and —k are degenerate because of the axial symmetry 
of the deformed potential. The lowest states of these 
nuclei will therefore belong to the configurations { ± J } n 

(where n is the number of nucleons outside the closed 
shells of O16). The following states belong to these 

10 In our notation we follow Levinson, Ref. 18. 
11 D. M. Brink and A. K. Kerman, Nucl. Phys. 12, 314 (1959). 

f, | in O17 (and F17), 

V \ / = 0 , l , 2 , 3 , 4 , 5 , inF1 8 , 
2 ^ 

1 / ) / = 1,2, 3,4, 

| ) / = 0 , 2 , 4 , 

h-i \ 1 3 5 7 

| / 2 2 2 2 

1 — 1 V 
2 2 \ 

/V=0, 

(4) 

I 2 2 

i n F 1 

i n O 1 

11 13 
in F1 9 (and Ne1 9), 

2, 4, 6, 8, inNe 2 0 . 

One should remember that every state is degenerate 
with the state obtained from it by inverting the signs 
of all the &'s. I t is shown in Appendix B that all the 
wave functions (4) are eigenfunctions of the isospin Z\ 
The functions | _ | / ) and \\ — \ J) for 7 = 0 , 2, 4, have 
T=l. All the other functions have the lowest possible 
isospin. Also, it will become clear from Appendix B that 

" 2 ' ' 2 ' • 

(5) 

(where both functions are normalized). I t was therefore 
included only once in the list (4). 

The wave functions | A J) and | \J) for / = 1, 3, are 
nonorthogonal. Therefore, in these two cases one has 
to diagonalize two by two matrices in order to obtain 
energies and eigenfunctions. 

2.2 The Experimental Data 

Let us now look for all the energy levels, belonging to 
the states (4), which are known experimentally.13'14 In 
O17 (and F17) we have the J + level at 0.87 MeV (and 
0.50 MeV) above the f + ground state. The f + level 
lies 5.08 MeV (and about 4.7 MeV) above the ground 
state. 

Out of the 10 levels which may belong to the con
figurations { ± J } 2 (in F18 and O18), 9 levels are known 
experimentally. The ground state of F18 and the level 
at 1.70 MeV have the assignment 1+ T = 0 . They are 
probably the eigenstates of the 7 = 1 two by two matrix. 
Similarly, the two 3+ T=0 states, at 0.94 MeV and at 

12 We omit, hereafter, the quantum number M which is irrel
evant to the discussion. 

13 F. Ajzenberg-Selove and T. Lauritsen in The Nuclear Level 
Schemesf Landolt Bomstein Tables (Springer-Verlag, Berlin, 
1961). 

14 Nuclear Data Sheets, compiled by K. Way et al. (Printing and 
Publishing Office, National Acadamy of Sciences-National 
Research Council, Washington 25, D.C.) NRG 6Q4-2Q, 61-1-22. 
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T A B L E I . Energies of the states P J { ± J } 7 ! 

Nucleus 

8 0 9
1 7 

9 F 9
1 8 

9F10 1 9 

icNexo20 

State 

0.87 
5.08 
g.s. 

1.08 
1.70 
3.07 
2.52 
4.65b 

1.13 
g.s. 

2.10 
0.94 

g.s. 
1.56 
0.20 
2.79 
g.s. 

1.63 
4.25 

/ ' 

i+ 
f+ 
f+ 
0 + 
1+ 
2 + 
3 + 
4 + 
5 + 
1 + 
2 + 
3 + 

i+ 
f+ 
f+ 
1+ 
0 + 
2 + 
4 + 

T 

~T~ 
i 
i 
1 
0 
1 
0 
1 
0 
0 
0 
0 
1 
2 1 
2 

i 1 
2 
0 
0 
0 

K 

~i~ 3, 
2 

i 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
2 

I 
i 1 
2 
0 
0 
0 

Total 

Experi
mental 

3.28 
-0 .93 

4.15 
12.23 
11.61 
10.24 
10.79 
8.66 

12.18 
13.31 
11.21 
12.37 

23.73 
22.17 
23.53 
20.94 
40.68 
39.05 
36.43 

energy* 
Calculated 
(without 

T=l states) 

3.28 
-0 .93 

4.15 
[13.55] 

11.61 
[9.03] 
10.79 
[5.46] 
12.18 
13.31 
11.21 
12.37 

23.76 
22.57 
23.51 
20.74 
40.48 
39.13 
36.45 

a From these the binding energy of O16 was subtracted. 
b The height of this level is calculated from O18. 

2.52 MeV15 are probably the eigenstates of the J=3 
matrix. These states are admixtures of the K=l and 
K=0 states. The 2+ T=0 level at 2.10 MeV15 belongs 
to the 11) configuration. The levels 0+ (1.08 MeV) and 
2+ (2.07 MeV) with T= 1 belong to the | _|) configura
tion. The corresponding levels in O18 are the ground 
state and the level at 1.98 MeV above it. The 4 + T = 1 
level is found only in O18 (at 3.55 MeV). Its position in 
F18 should be 4.65 MeV above the ground state. 

As we have already mentioned, the configuration 
assignment to the 5-\-T=0 level (at 1.13 MeV) is 
either | _|) or | | ) . Only one level of { ± | } 2 levels has 
not been found experimentally. This is the 4 + 7 = 0 
level. The reason is, very probably, that this level 
should lie rather high above the ground state of 
F18. 

In F19 we find 4 energy levels which are included in 
our analysis. These are the following levels: J + (ground 
state), f + (at 0.20 MeV above ground state), f + (at 
1.56 MeV) and another level (at 2.79 MeV), the spin 
of which is not sure. Experimentally, it may be a f or a 
f (unknown parity) level. General considerations tell 
us that for pure (shell model) J5/23 configuration the | 
level should lie lower. Also, configuration interaction is 
probably stronger for the J state than for the f state. 
The same order should therefore remain also in the 
present model. Hence, we assume tentatively that the 
2.79-MeV level has the assignment J + . 

Additional levels which belong to the configuration 
|*7*> of F19 (or Ne19) are the 9/2+, 11/2+ and 13/2+ 
( r = | ) levels. These levels should lie higher above the 
ground state and have not been found experimentally. 

15 J. A. Kuehner, E. Almqvist, and D. A. Bromley, Phys. Rev. 
122, 908 (1961). 

Five energy levels, 0+ , 2+ , 4+ , 6+ and 8+ , with 
T=0 belong to the configuration | | l | ) of Ne20. Experi
mentally, only the 0 + (ground state), 2+ (at 1.63 
MeV) and 4+ (at 4.25 MeV) have been found. Recently, 
some evidence has been obtained for a level at about 
7.6 MeV above the ground state of Ne20. This level may 
be the 6+ level.16 

The list of all the experimentally known levels which 
were included in our analysis is given in Table I. 

2.3 The Calculation 

The Hamiltonian of n nucleons outside closed shells 
of O16 is given by 

H= Z#oM+ E V(r,s). (6) 
r<s 

Here, Ho (/*) is the kinetic energy of the rth. nucleon plus 
its interaction with the closed shells. The second term 
in (6) represents the residual effective interaction 
between the outside nucleons. In order to obtain the 
expression for the energy of a state (4), one has to take 
the expectation value of H in this state. 

We assume that the single-nucleon wave functions 
(1) are the same in the nuclei O17 up to Ne20. In other 
words, we neglect any changes in the deformed potential 
well due to addition of a few nucleons. It is true that it 
would be difficult to justify the assumption. It may, 
however, be still a good approximation as long as the 
number of extra nucleons is small. According to this 
assumption, the parameters17 x, y, and z, as well as the 
shell-model wave functions ^, of Eq. (1) are the same 
for all the nuclei which are treated in this work. 

Let us now consider the one-body and two-body 
effective interaction parameters. First, we define the 
single-nucleon energies 

(iJ\H0\iJ)=Aj J=hl (7) 

The two-body matrix elements are given by 

\ \3v\ \JHaj / = 0 > *, 2, 3, 4, 5, 

\iAV\[Jrhj /=1>2,3,4, 

/ 2 2 \ 

( J\V\ J)=cj 7 = 1 , 3 . 

(8) 

It is easy to show (see Appendix B) that the energies 
of all the states (4), belonging to the configurations 
{±^}n , can be expressed in terms of the three single-

16 A. E. Litherland, J. A. Kuehner, H. E. Gove, M. A. Clark, 
and E. Almqvist, Phys. Rev. Letters 7, 98 (1961). 

17 Since we are dealing only with the k — ± J wave functions, we 
omit the index k. 
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particle parameters (7) and the twelve two-particle 
parameters (8). 

The coefficients of the parameters in these expressions 
are functions of the deformation parameters x2, y2, and 
z2 [Eq. (1)]. Since the wave functions have to be 
properly normalized, they are, in fact, only functions of 
the ratios between the parameters. We can therefore 
normalize to x2=l. The energy expressions, thus 
obtained, are equated to the corresponding experimental 
energies. For each pair of values y2 and z2 we have a 
different set of equations. Each set may be solved to 
obtain "best values" of the effective interaction param
eters-^ j , aj, bj and cj-by a, least-squares calculation. 
These values are then inserted into the theoretical 
expressions to obtain the calculated energies which are 
to be compared with the experimental energies. 

In preliminary calculations we neglected the overlap 
between the K=l and K=0 (7=1, 3) states in F18. 
We also assumed the nondiagonal elements of the 
Hamiltonian between these states to be negligible. Thus, 
the set of equations to be solved for the best values of 
the interaction parameters became linear. We made a 
least-squares fit between these linear equations and the 
experimental energies for different values of the 
deformation parameters y2 and z2, y2 and z2 were changed 
stepwise from 0.1 to 1.0, the size of the step being 0.01 
in the region of best agreement and 0.1 in all other 
regions. We found that the best agreement between 
calculated and experimental energies was obtained for 

;y2=0.32, *2=0.27. (9) 

The dependence of the agreement between calculated 
and experimental energies on the deformation param
eters (y2,z2) is plotted in Fig. 2. 

Redlich3 used a different procedure to find the best 
values for y2 and z2. He adjusted the values of y2 and z2 

so that his wave functions should be as similar as 
possible to the intermediate coupling wave functions 
calculated by Elliott and Flowers.2 The values he 
obtained are very near to our values, namely, 

y2=0.25, s2=0.30. (10) 

Other investigators18 also found the deformation 
parameters to be of about the same values. We therefore 
conclude that the values of these parameters are quite 
insensitive to the detailed form of the effective two 
body interactions. In the final calculation we take the 
values of the deformation parameters to be 

^ = 2 2 = 0 . 3 . (11) 

It was also found in the preliminary calculation that 
the "best" value for the parameter Z>4 is very poorly 
determined from the existing experimental data. This 
parameter may attain a wide range of values without 
affecting the results significantly. We, therefore, assume 

18 C. A. Levinson (private communication). 

0.27 

FIG. 2. Dependence of the agreement between theory and 
experiment on the deformation parameters y2 and z2 in the (Id, 2s) 
shell. The numbers near the graphs are the sums of squares of 
deviations between calculated and experimental energies. The 
dashed line describes the values of y2 and z2 as calculated by 
Nilsson (see Ref. 9). 

tentatively 
: # 5 , (12) 

(the bars denoting normalized parameters). This is a 
reasonable assumption since the wave functions ||4) 
and | _|5) are very similar. The first is the shell-model 
wave function ^(^5/2^3/2/=4 T—Q) and the second is 
*A(d5/2

2/=5 T=0). A transformation to LS coupling 
scheme shows that both are 13G states. A large variety of 
effective two-body forces will therefore satisfy Eq. (12). 

Using Eqs. (11) and (12), we are now able to fix the 
values of most of the interaction parameters, (7), (8), 
from the experimental energies in 017 and F18. The only 
ambiguities which remain are in determining the values 
of a j , bj, cj for 7 = 1 , 3. For each 7, only two levels 
exist to determine the values of three parameters. 
Fortunately, it is found, by diagonalizing the two by 
two matrices (see Appendix B), that the ambiguities 
are rather small. It is found that 

1.48<5i<3.16MeV, 

1.76<c3<3.29MeV. (13) 

(The bars denote normalized quantities.) Once the c's 
have been determined, the d's and 5's can be determined 
from the energy levels in F18. 

As we have already pointed out in the Introduction, 
it is plausible that the deformations are much smaller 
for states with maximum T than for other states. We 
therefore prefer not to determine the values of #0, a2, #4 
from the T= 1 levels of F18 (and O18). 

The best values for the parameters £1, c3, do, d2, a4 

are found by a least-squares fit to the seven existing 
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energy levels in F19 and Ne20. I t is found that best 
agreement with experimental data is obtained if C\ 
takes its minimum value and c3 takes it maximum value. 

The values which we obtained for the interaction 
parameters are19 (in MeV) 

.A i/2=3.28, 

JU / 2 =-0.93, 

JU/2=4.15; 

ao=6.55, 

5 i=8 .48 , 

d2=2.67, 

a 3 =6.17, 

^4=0.46, 

05=3.88; 

6 i=6.22, 

5 2=6.53, 

6 3=5.21 5 

64=3.88; 

c i=1 .48 , 

c3=3.29. 

(14) 

The energies calculated with these parameters should 
be compared with the experimental energies, see Table I. 

The wave functions obtained for the T = 0 states in 
F18 are 

1+ g.s. -0 .927 h\ +0.934 

1.70 0.601 

3+ 0.94 0.550 

1 / 
2 ' 

*l \+0 .581 | 
-~2 ^ 

(15) 
2 ' 

2 - \ ~ 2 - \ 
3>+0.513 3 ) , 

• 2 ' ' 2 ' 

I I V l l V 

2.52 1.463 23 >—1.474T3) . 

3. DISCUSSION 

The model which is used in this work to calculate the 
low-lying energies in the beginning of (2s,Id) shell is 
the same model which has been used by Redlich.3 The 
wave functions of various states are obtained by 
projection of the part with proper angular momentum 
out of intrinsic deformed potential wave functions. We 
assume that the low-lying states in O17, F18, F19, and 
Ne20 belong to the intrinsic configurations { ± ^ } n . 
Most of the wave functions are entirely determined by 
this assumption. However, the T = 0 ( 7 = 1 , 3) states in 
F18 can be obtained by projecting out of the intrinsic 
K=0 as well as K=l state. The wave functions ob
tained in these two ways are nonorthogonal. I t is 
therefore necessary to diagonalize the Hamiltonian 
between the two states after the wave functions have 
been properly orthogonalized. 

The wave functions depend on two deformation 
parameters y2, z2. These were determined by us in a 
preliminary calculation so that they will give best 
agreement of calculated energies with the experimental 
energies. Their values are given in Eq. (9). Redlich 

19 We give here the values of the normalized parameters (see 
Appendix B) since these are easier to interpret. In actual calcula
tions it is simpler to work with the unnormalized parameters as 
denned in Eqs. (7), (8). 

obtained very similar values [Eq. (10) ] by adjusting 
these parameters so that the wave functions should 
agree with intermediate coupling wave functions. 
Similar values of the deformation parameters were 
also obtained by other investigators. However, these 
values do not correspond to any specific Nilsson 
deformation rj. This may be seen from Fig. 2 where the 
dependence of y2 on z2 as calculated by Nilsson is 
plotted. There is no deformation 77 for which the point 
y2(r)), z2(r\) lies near the point (9). This is not surprising 
since Nilsson restricts himself to the deformed harmonic-
oscillator potential without referring to actual experi
mental data. 

To calculate the energies of various states we do not 
make any specific assumptions on the form of the 
effective two-nucleon interactions. Similarly, no as
sumptions are made on the radial form of the single-
particle wave functions. I t is only assumed that the 
single-nucleon wave functions, as well as the deforma
tion parameters, are the same for all the nuclei treated. 
In the present analysis we take the matrix elements of 
the Hamiltonian in the two-nucleon configurations to 
be free parameters which are adjusted so as to fit best 
the experimental data. Most of these interaction 
parameters were determined from the energy levels in 
O17 and F18. However, we did not use the T— 1 levels 
of F18 (and O18) to determine the corresponding param
eters. There is reason to believe that these levels are of 
different nature and should not be included in the 
analysis. Indeed, including these levels in the analysis 
makes the agreement between calculated and experi
mental energies of F19 and Ne20 much worse. The re
maining parameters which cannot be determined 
from the O17, F18 data were adjusted so as to give best 
agreement with the energy levels in F19 and Ne20. 

The good agreement, which we obtain, between 
calculated and experimental data is displayed in Table 
I. I t is much better than the agreement obtained by 
Redlich. This is so although our wave functions are 
very similar to Redlich's wave functions. 

One may conclude that the model is satisfactory. 
The unsatisfactory results, which were obtained with 
this model by other investigators are only due to the 
restrictive assumptions on the form of the effective 
two-body interaction. One has to bear in mind that 
calculations can be done to check the validity of this 
model without using any specific phenomenological 
two-body interaction. 

Using the parameters (11) and (14) we are able to 
predict positions of other energy levels in this region. 
The 4 + r = 0 level in F18 is predicted to lie at about 
6.2 MeV above the ground state. In F19 a | + level 
should lie at about 4 MeV. In Ne20 the 6 + level should 
be found around 8.4 MeV above the ground state. 

We should, however, point out that the experimental 
data, which are included in our analysis, are barely 
enough to make the interaction parameters reliable. 
Any prediction based on these parameters might 
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therefore be subject to changes when more experimental d2 with T= 1 
data will be gathered. I t is desirable that more energy-
levels should be measured in this region (together with 
their spin-parity assignments) so that we may arrive 
at a reliable picture for the structure of these nuclei. 

J=0 

ds/22 

dz/22 

H/2 nn 
3.66 
2.99 

2.99 
2.44 
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7 = 2 

dm2 

^5 /2^3 /2 

df>/22 

1.61 
-1.05 

1.50 

^5/2^3/2 

-1.05 
0.58 

-0.49 

dz/22 

1.50 
-0.49 

0.31 
(A2) 

7=4 
^ 5 / 2 2 

^5 /2^3 /2 

H/2 dh/2d; 5/2^3/2 

- 0 . 2 2 
- 1 . 5 6 

- 1 . 5 6 
2.12 

The matrices of V for the states of d2 with T = 0 are 

APPENDIX A: DEPENDENCE OF THE J=\ 
COUPLING SCHEME ON T 

We shall demonstrate here20 that for any short-range 
attraction between nucleons the jj-coupling wave 
functions are much better approximations for states 
with maximum isospin, T, than for states with lower T. 

A short-range attraction is always strongest in the 
S (L—0) state of two nucleons in the nl shell. I t becomes 
weaker attractive for even values of L as L becomes 
bigger. I t is much weaker for states with odd L. If the 
force has an exchange mixture it may even be somewhat 
repulsive. 

Let us take as an example the d shell. The two-nucleon 
interaction may be taken tentatively to have the 
following matrix elements in the LS coupling scheme: 

(d2S\V\d2S)=6A, 

(d2P\V\d2P)=0, 

(d2D\V\d2D)=?>.5, (Al) 

(d2F\V\d2F)=-1.0, 

{d2G\V\d2G)=2.9. 

I t is assumed tentatively that the interaction is spin 
independent. I t is also tentatively assumed that the 
(LS coupling) nondiagonal matrix elements are small 
enough to be neglected. The interaction defined by (Al) 
was obtained in a rough calculation21 using the spectrum 
of O18 (known to be a jj-coupling spectrum1) and the 
LS <-» /./-transformation matrices.22 Although this inter
action is at most a very rough approximation, it 
possesses the important features, mentioned above, of 
any reasonable nuclear interaction. 

A straightforward calculation gives the matrices of 
V in the //-coupling scheme. We find for the states of 

H/2 d$/2d\ S/2^3/2 *3/2 

d$/22 

dh/idz/2 
dz/22 

7 = 3 
dh/22 

^5/2^3/2 
dz/22 

2.27 
1.84 

-1.96 

d$/22 

1.87 
1.91 

-1.00 

1.84 
4.88 
0.01 

^5/2^3/2 

1.91 
1.25 
1.03 

-1.96 
0.01 
2.45 

dz/22 

-1.00 
1.03 
2.29 

(A3) 

In order to obtain the full energy matrices one has 
to add the single-particle energies to the diagonal 
elements. The nondiagonal elements which connect the 
configurations dz/22 and J3/22 can be neglected for two 
reasons. First, because of the big energy necessary to 
excite a dm nucleon into the J3/2 subshell, the difference 
between the diagonal elements of the two configurations 
is about 10 MeV. Thus, the influence of the correspond
ing nondiagonal element is rather small. Second, it 
can be shown that interactions between configurations 
which differ by the excitation of a pair of particles are 
automatically absorbed into the effective interaction 
parameters of the pure configurations.23 

I t remains, therefore, to look for matrix elements 
connecting configurations which differ by the excitation 
of one particle only. We see immediately in the matrices 
(A2), (A3) that the elements which connect the two 
lower configurations, J5/22 and ^5/2^3/2, are bigger in the 
T=0 states than in the T=l states. The reason can 
be better understood if we decompose the //-coupling 
wave functions into their LS coupling components. We 
see that the wave functions for the ^5/2^3/2 configuration 
with T—0 have big components of S and D states. On 
the other hand, no S state can be contained in the 
dh/idz/2 T—\ states. The D component in the ^5/2^3/2 
2 + T = l state is small.24 

20 The results summarized in this Appendix were obtained in 
collaboration with Professor I. Talmi; I. Talmi, Rev. Mod. 
Phys. 34, 704 (1962). 

2 1 1 . Unna, thesis, Hebrew University, 1962 (unpublished). 
22 G. Racah, Physica, 16, 651 (1950). 

23 G. Racah, in Rend. Scuola Intern. Fis. Enrico Fermi, 15, 
(1960), p. 10. 

24 I t seems, however, that the yy-coupling configuration mixing 
is important in the 4-f-jT=l state. Here, the G component of the 
dmdzn configuration is much bigger than the F component. 
More evidence to this fact is given in Ref. 1. 
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Our arguments can be generalized to the case of more 
than two particles in the I shell. The two lowest con
figurations for n particles in the I shell are j n and 
jn-\jt where j—l\\ and j'=l—h The nondiagonal 
matrix element between these configurations can be 
expressed in terms of the nondiagonal elements in the 
two-particle configurations 

(j*TJ\ £ Vkl\j-KT'J')j'TJ) 
k<l 

= T.ortJ,(J''J',TJ)(j*TJ0\V\jj'T»To). (A4) 
TQJQ 

The coefficients a are proportional to products of 
fractional parentage coefiicients and Racah coefficients. 
When T has its maximum value, namely r = \ n , only 
terms with To= 1 will appear in the summation on the 
right-hand side of (A4). When T is smaller than its 
maximum value, also terms with T 0 = 0 will appear in 
the sum. We have already seen that the matrix elements 
(f TO=1JQ\V\ jf TQ=1 JO) are in general smaller 
than the elements {j2 JHO=0 JQ\ V\jf TQ=0 JO). There
fore, the nondiagonal elements between many-particle 
configurations (A4) are smaller for states with maximum 
T than for states with lower T. 

We conclude that the //-coupling scheme may be a 
good approximation for states with maximum T. On the 
other hand, one may have to use the intermediate 
coupling scheme (or an approximation to it) to describe 
states with low isospin T. 

APPENDIX B: DETAILS OF THE CALCULATION 

The wave function25 of a single nucleon in the (ld,2s) 
shell in an axially symmetric deformed potential well is 

<Pk(i) = lL %3k^kj(i), (AS) 

k is the magnetic quantum number in the direction of 
the symmetry axis of the nucleus. The projection 
operation PMJ has been defined in Sec. 2.1. 

I t is trivial that 
Pm3'<Pk=Xjk\pm

j. (A6) 

The normalized wave function of a single particle is 
just tJ. 

I t is easy to calculate PMJ$ktyk,jt 

PMJtktyk>j' 

JK Ik k' KALm mf KA 
mm' 

= PMJE\JJ \K»'J=\JJ \M»'J, (A7) 
JK Ik kf KA Ik V KA 

where [ ] is a Clebsch-Gordan coefficient. I t has been 

26 In our calculations we follow closely the methods of Levinson, 
Ref. 18. 

shown by Redlich3 that this projection operation is 
equivalent to rotating the system i.e., taking a combina
tion over all directions which is an eigenstate of / . 

I t is easy to show that for any shell with even I, due 
to the degeneracy of k and —k 

Xjk=(-l)J~il2Xj-*. (A8) 

From Eqs. (A5), (A7), and (A8), we obtain for the 
wave function of two particles in the \A) (K=0) 
configuration 

4>MQJ=PMJ{ <Pm<P-m} = P M J L XjXy ( - l ) y / - 1 / V i / 2 ^ - i / 2 y / 

33' 

-j r J-
=Ew(-iF-1/*P 3 \ U -i oJ 

,ii'J (A9) 

We shall omit, subsequently, the subscript k, re
membering that we shall always have &=J. I t is easy 
to see that \pMoJ is an eigenfunction of the isospin T. 
For even / only antisymmetric (T= 1) wave functions 
appear in (A9). For odd / only the symmetric ( T = 0 ) 
functions appear. 

For 11) (K= 1) we have 

fmJ=E XjXjA WM"'J . (A10) 
33' LJ | 1J 

In this sum only symmetric ( r = 0 ) functions appear. 
Let 

n m 

KT= Zki Kr= £ hi KT+KV=K. (All ) 

A simple generalization of (A6), (A7), and (A9) gives 

ki --km \ r / i J W n rJiJ2Ji 
km+v - - kn ' JiJ<L.Kv Kr KAmim2Lmi m2 MA 

XPmi
Jl\kv • • A » > P « / « | * - H - I - • -K) (A12) 

[where we have used the identity (3)]. 
The overlap of two wave functions is given by 

N« 
ki • • • £ 

R"m-\-l' ' ' ™n 

* i • • • 

- ( 

kx' 

k 

' W t - f l * • • k 

' Km \ 

'• • • k ') 

l ' ---km' V 
JM > . (A13) 

The expressions which will appear hereafter are 
independent of M. We shall, therefore, omit it from now 
on. In order to normalize the wave function (A12) 
it has to be divided by 

N< 4 
i,n—m I 

* i • 

km+V 

K>m 

• k 

k\ ' • • k 

km+l 

' Km\ 

-* * &n' 

, 1/2 
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An identity which is useful in calculating the overlap integrals is 

N. { 
ki 

m+1* k km+l 

•••km'\ r / i / 2 / n r 7 i / 2 Ji 

'•••kn7 JIJLK, KT KJLK,' K*' K'J 

X(h- • -kmJi\W- ••km'Jl)(kmJrv • -kj^k^i'- ••kn'J2). (A14) 

The following overlap integrals are used in the present work: 

^i.</(fli)=A^</(-i|-i)=*A 

Nt.o
J(i-i\i-h)=dj=2Z\ U/i2 ' 

/ i J i i —I Oj 

2 « / 2 2 , / even 

/ o d d 

V - j l - i / JuLh - i oJ 

V i i i / /i^Lo i IJ 

U - i S A - i / / u l o 0 0. 

(A15) 

dJxdj2. 

The single-particle energies in the state (3) are calculated with the help of Eq. (A12) and similar identities 

J K\ * &m ! &\ 'Km \ 

< / E ^ o W J) 

m—l,n—m"'\ J 

™m-\-l ' ' * ^n'^m-fl * * * Kn / 

+iv, 
/ *i • • • * » | * i ' • • • * « ' \ i , , 

,n-m-A I , J <iWl|ffo| *<''/!>. (A16) 
h , , • • • £ , £ • , , • • • & \k • / • • • £ • , -,'h-i.i'' • • b 

The single-particle energies of the states which are dealt with in this work [Eq. (4)]'are 

< i - i / | S H o | i - | / > = 4 Z \XJMJI, /even, 
JV2L.5 — J OJ 

= 0, / o d d 

/ I I I l \ r / i / 2 J~\ 

\ - i 1 l - j / ™ L j - j o J 

< / 2 # 0 / ) = 2 £ U A ^ / I , 

< ; b f l , / ) = 2 E 
\ _ i I | i / 7 l J j_ i i 0 J U * 1-

=0 , 

i*J22(-l)J'sr"i^J-i, -fodd 

/ even 

file:///xjMji
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/ 2 2 

> 9. 
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/i/J_-i i iJ Vil*/ /./.Li o iJL- i I *J \-h\y 
/ i l l i l 1 v r- T T 7"-i2 / I I I I I v 

/ 2 ~ 2 J 2 ~ 2 \ ^ l * 7 ! ^ 2 •/ / 2 2 2 2 \ 

X2~—2" • , 2 ~ ~ 2 " ' / 1 / 2 L 2 ~2 U J N 2 J 2 ' 

Again, with the same methods it is possible to calculate the matrix elements of the interaction between the 
nucleons in various states. 

(A17) 

/ Kl ' ' ' Km 

V J 

^Rm+1' * * tin 

E V(rs)\ 

• £ 
U <ii,h' <fa',JiJw 

X 

/ l / 2 / 

>#m-4-l ' ' ' &n 

| Nn~2,n-mJ{ 

x(Kki2j1\v\ki/kn/j1)+^ E I 

I Jl J 2 J-\ 

/vij/ \ "12' ^-i}' ™*Y -**• —* 

™1 * * * Mil'-— 1 ^ ' i ' - f - l ' * ' &i2f—1 ^*2'4-l * ' *™W 

ftl' ' ' ' fc, 

>™m+l* ' ' &i\— \&i\-\-V ' ' ^12—1^*2+1 ' ' ' ^ f t ' ^ m + 1 ' ' 'Mil'—1 'W'i'-fl * * * ^ V — 1 " ' tV-f l ' ' * ft 

Jx Ji J 

XiV w—1, w—m—1 

# 1 * * */c^1_i/ct"1_j_i * * * / c m 

:)} 

ktl.'+kv' K'-ki/-ki/ K'S 

< A F / ! > , (A18) 

[ )* l+*2~ *l'— *2' 

(In the first term i2, i%<m. In the second term ii, ii>m. In the third term ii, i{<m and i2, ij>m.) 
For the states with which we are dealing in the present work, the interaction energies are 

ih-hJ\V\h-hJ)^2aj, /even, 

= 0, /odd, 

/ j \ V \ J ) = a,, 
\__i L_i / 

^ 2 ' ' 2 ' 

/2 2 \ 

2̂ ! ' 2 ' 

/ 2 2 \ 

G'PV/' 
> 2 ' ' T J ' 

/ ) = E , I ^2
2C2+(-i)-">/l+ E , I x/ ,^, 

i / JIJJLO \ ^J /i/aLi -H-J 

_ r / i /2 / n r / i Ji J~\ 

/i/J. o * 4JL 1 - * JJ 

< 

1 I 
2 2 

1 1 
2 

= cj-, / odd, 

= 0, J even, 

file:///-h/y
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M-4 I I*—* / MLO o oJ \ - i l - J / ^JLi - l o J \ j l j / 

- 8 E k W , 1 k , /even, (A19) 
J1/2L0 0 oJL l - 1 OJ \ - * l * / 

= 0, / o d d . 

In Eqs. (A16) to (A19), the energies of the ^-particle systems are expressed in terms of the energies in the 
single-particle and two-particle systems. This is done with the aid of a sort of generalized coefficients of frac
tional parentage, recently defined by Kurath.26 

One has to remember that the energy expressions (A16) to (A19) are still not normalized. To get the normalized 
expressions (as well as the definitions of the normalized parameters) one has to divide each expression by the 
corresponding overlap integral [Eq. (A15)]. 

One has also to remember the degeneracy with respect to reflection at the (xy) plane (the z axis is the symmetry 
axis of the nucleus). Thus, for example 

/ 2 2 2 2 \ / 2 2 2 2 \ 

< x T * Jr\ Av\ v̂-
\ 2 ' « 2 ' ^ 2 ' ' 2 ' 

(A20) 

As an example let us write down the energy expression for the 13/2+ (T=^) level in F19 (not yet found 
experimentally) 

/ 2 2 — 

< , 1 3 / 2 H 
2 2 — \ 

I \ 13/2) 
(100y2x4)Az/2+ (200/x4+50x6)i5/2(150^V+25^6)a4+ (50y2x4)b4+ (100;yV+25*6)<Z5 

100;yV+50/3*6 
(A21) 

where the bars denote normalized quantities. 
After normalizing to x2= 1 (see Sec. 2.3) and using the unnormalized energy parameters Eq. (A21) takes the form 

/ 2 2 j-l 2 2 — \ 

( x 13/2 ff t 13/2) = 
1004 3/2+ (200y2+50)A 5/2+ 175a4+140/364+ (252y2+63)ab 

100^+50/3 
(A22) 

It can be easily shown that the wave function for this state is 

1 i 
2 2 

\ l 
13/2) = 

J / (1+6/)1 '2 
-^5/2313/2)-

61/2y 

(1 + 6 : y2)l/2 
^(^5/22(5)^3/2l3/2)5 (A23) 

where yp(d§j£ 13/2) and ^(^5/22 (5)̂ 3/2 13/2) are antisymmetric functions. 
The states \-^J) and | §*/) /— 1, 3 are nonorthogonal. One has, therefore, to diagonalize the Hamiltonian in an 

orthogonal scheme. Let us choose the orthogonal wave functions to be, 

where, 

V \ and ( l - a ^ J - i / s I r A - a j * j \ | 
"2 <• ' 2 ' 2 ' 

26 D. Kurath, Argonne National Laboratory Report ANL-6312, 1961 (unpublished), 
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(The bar denotes normalized functions.) The energy matrix to be diagonalized will then have the form 

/ 2 - 2 - \ - / 2 - 2 - \ / 2 - 2 -A 

< y\H\ / ) a-«/H< /H^)"a / \ AH\ y)\ 
\ 2 , ! 2 ' <• x 2 , , 2 / x 2 ' ' ~2 ' 

\ - o - l 1 : 2 ' ^ 2 " ' I 2 ' ' I \ j ' ' 2 " ' * 2 ' '2~ ' 

/ A I | 1 v 1 
/ 2 - 2 _ \ 

W ( / * / ) . 
\ 2 ! I 2 ' ' 

The various matrix elements appearing in this matrix can be expressed in terms of the parameters (7), (8) by 
means of Eqs. (A17), (A19). 
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Measurement of the Triple Scattering Parameter Rr in Proton-Proton 
Scattering at 1371 MeV* 
STANLEY H E E AND RICHARD WILSON 

Cyclotron Laboratory>, Harvard University, Cambridge, Massachusetts 
(Received 24 July 1963) 

The proton-proton triple scattering parameter Rr has been measured at a laboratory energy of 137J MeV 
over a range of scattering angles 02. The following values were obtained: 02(laboratory) = 20°50/, 0.562 
dbO.052; 25°26', 0.472±0.054; 30°8', 0.375±0.068; 35°16', 0.238±0.084; 39°55', 0.251±0.121. The stated 
errors include a 5% error in R! which is systematic from angle to angle. This has been combined quadratically 
with the other errors. 

INTRODUCTION 

THIS experiment continues the program of measur
ing the Wolfenstein triple-scattering parameters1 

in p-p scattering near 140 MeV. The depolarization 
parameter2 D, rotation parameter3 R, and the A param
eter4 have previously been measured. This article 
describes a measurement of the Wolfenstein parameter 
R' for p-p scattering at 137J MeV over the range of 
laboratory scattering angles 20 to 40°. The parameter 
R! relates the initial polarization in the plane of the 
second scattering and perpendicular to the incident 
direction of the component of polarization after scatter
ing which is along the direction of the outgoing 
motion. 

The experimental arrangement for the p-p measure
ment is shown in Fig. 1. A proton beam having its 
polarization vertical passes through a solenoid magnet. 
The polarization precesses 90° about the direction of 
motion, so that on leaving the solenoid the beam has a 

* Supported by the joint program of the U. S. Office of Naval 
Research and the U. S. Atomic Energy Commission. 

1L. Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956). 
2 C. F. Hwang, T. R. Ophel, E. H. Thorndike, and Richard 

Wilson, Phys. Rev. 119, 352 (1960). 
3 E . H. Thorndike, J. Lefrangois, and Richard Wilson, Phys. 

Rev. 120, 1819 (1960). 
4 Stanley Hee and E. H. Thorndike, Phys. Rev. (to be 

published). 

polarization in the horizontal plane and perpendicular 
to the direction of motion. (The sign of the incident 
polarization Pi can be reversed by reversing the 
solenoid current.) The beam leaving the solenoid strikes 
the hydrogen target. Particles scattered through an 
angle 62 in the horizontal plane pass through a sector 
magnet which rotates the polarization through an angle 
near 90°, thereby changing a longitudinal component 
into a transverse component. This beam, denned by 
counters A, M, B, then strikes the analyzing scatterer. 
Particles scattered through an angle 03 in the vertical 
plane are detected by the counter telescopes CD and 
EF. The angles #3 of these telescopes can be reversed in 
sign (up or down). 

The asymmetry e%s is measured for the two senses of 
telescope counter position and for the two signs of 
incident polarization. Rf is then related to the measured 
asymmetry by 

eZs=PiPz(R cosx+#' sinx), (1) 

where P% is the analyzing power and % is the angle of 
spin rotation. (03s is defined as in Refs. 3 and 4.) 

The apparatus and techniques used in this experiment 
are, with a few modifications, identical to those used for 
measuring R and A, and greater detail on various 
points may be found in Refs. 3 and 4. 


